On the Periodicity of Morphisms on Free Monoids

نویسندگان

  • Tero Harju
  • Matti Linna
چکیده

— For a given endomorphism h on a finitely generaled jree monoid there are only flnitely many primitive words w for which h(w) = w for some n^2. Also, one can effectively find ail such w. Using this it is shown that it is decidable whether or not a morphism h defines an ultimately periodic infinité word when iterated on a given word. This latter resuit thus solves the DOL periodicity problem. Résumé. — Soit A un alphabet fini, A* le monoïde libre engendré par A. Pour tout endomorphisme h de A* il existe seulement un nombre fini de mots primitifs w tels que h(w) = w avec un entier n^.2. Aussi peut-on effectivement trouver tous les w de cette espèce. Avec cela on prouve qu'on peut résoudre effectivement le problème suivant : Est-ce que le mot infini obtenu par itération de h est ultimement périodique. Cela résout le problème de périodicité des DOL systèmes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Local Transductions Is Hard

Local deterministic string-to-string transductions are generalizations of morphisms on free monoids. Learning local transductions reduces to inference of monoid morphisms. However, learning a restricted class of morphisms, the so-called fine morphisms, is an intractable problem, because the decision version of the empirical risk minimization problem contains an NP-complete subproblem.

متن کامل

Upper set monoids and length preserving morphisms

Length preserving morphisms and inverse of substitutions are two wellstudied operations on regular languages. Their connection with varieties generated by power monoids was established independently by Reutenauer and Straubing in 1979. More recently, an ordered version of this theory was proposed by Polák and by the authors. In this paper, we present an improved version of these results and obt...

متن کامل

Relationals Morphisms and Operations on Recognizable Sets

— Relational morphisms betweenfinite monoids (a notion due to Tilson) are used to study the effect certain opérations on recognizabie sets have on the syntactic monoids ofthose sets. This leads to concise proofs ofa number ofknown results concerning the product opération, and a new resuit concerning the star opération. Résumé. — On utilise les morphismes relationnels (dus à Tilson) pour étudier...

متن کامل

Unambiguous Erasing Morphisms in Free Monoids

[FRS06] characterises strings with an unambiguous image of an nonerasing morphism. Only few results are known when regarding all (possibly erasing) morphisms.

متن کامل

Order-adjoint monads and injective objects

Given a monad T on Set whose functor factors through the category of ordered sets with left adjoint maps, the category of Kleisli monoids is defined as the category of monoids in the hom-sets of the Kleisli category of T. The Eilenberg-Moore category of T is shown to be strictly monadic over the category of Kleisli monoids. If the Kleisli category of T moreover forms an order-enriched category,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ITA

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1986